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PRINCIPAL EFFECTS OF AXIAL LOAD ON MOMENT-DISTRIBUTION
ANALYSIS OF RIGID STRUCTURES*

By Benjamin Wylle James
SUMHMARY

This thesis presents the method of moment dlatribu-
tion modifled %o 3include the effsct of axial load upon the
bending moments. This modification makes it possible to
analyze accurately complex structures, such as rigld fuse-
lage trusses, that heretofore had to be =znalyzed by approx-
inate formules and emplrical rules, The method is simple
enougih Yo be practicable sven for very complex sitructures,
and it glves a means of analysis for contlnuous beams that
ie sinpler than the extended thres~moment equation now in
COmmon UEBS. '

When the effect of axisl load is included, 1t 1is
found that the basic principles of moment disbtridution re-
main unchanged, the only difference being that the factors
used, instead of being constants for a given wamber, bde-
come functions of the axial load., Formulas have been de~
veloped for these factors, and curves plotted so that
thelr application requires no more work than moment dis~
tribution without axial load. Simple problems have been
included %o 41llustrate the use of the curves.

k INTRODUCTION

The importance of saving weight in airplane struc~
tures makes it necessary accurately to consider the sec~
ondary moments caused by the combination of axlal load and
lateral deflection. Formulas considering the secondary
moments 1n the case of coantinuous beams are guite familiar

%
Thesls subnitted in partial fulfillment of the reguire-
ments for the degree of BEunginser 1n Mechanlcal Englneor-
ing Aeronautics, Staenford University.
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to the aéronauticai engineer. They were originally de-
rived by Hlller~Breslau and have been extended by Profes-
s0r J« S« Newsll and presented in chapter XI of reference
l. However, no similar practical method hss been hitherto
avaiiable for the analysis of complex rigid frames when
the members are subjected to axial load.

Before the method of moment digtribution was devaeloped,
rigld frame analysis presented a very difficult prodlom.
In building design it was the usual practice to uwse approx-
imate formulas, necessitating very conservative assumptions
for the sake of-safety. Least work, slope deflection, and
other similar methods based on the principle of consistent
deformations, but neglecting the secondary moments due to
axial load, were used when it was necessary to get a more
accurate solution, These methods all involve the aqlution
of gimultaneous equations, however. and when the degree of
redurdsncy is high, the number of equations involved ne-
cessitates very tédious computations., As these methods
are too complex for practical use, it would hardly be worth
while to complicate them further by including the effects
of azial load. However, the development of moment distri-
bution in the last few years has gilven a means of rigld
building frame analysis that is simple enough to be prac—
tlcatle for complex as well as simple structures. If this
could be combined with Newell's eguations, without an ex-
cessive sacrifice of simplicity, the result would be very
valuable to the aeronsutical engineer. This thesis is the
record of what is believed to be a .satlsfactory and prac-
tical solutiop of the problem of combining these two meth-
ads of analysia,

As the Newell formulas have been used by aeronantical
engineers for several yearse, 1% will be assumed that the
reader is familiar with their usei they will not be dia-
cusged here, The method of moment distribution is rela-
tively new, however, and there has been vary little stand«
ardization of nomenclature snd gign convention, For this
reason a brief review of the basic principles will be given.

Homent diatr;bution was first presented by Profsssor
Hardy: Grosﬂ in an article entitled "Analysis of Continuous
Frames by Distributing Fixed-End Moments', published in
the Moy 1930 issue of the Proceedings of the A.S.C.,E. The
article has been reprinted, together with all the discus-
gion that followed as reference 2. Professor COross has
also lncluded a fhorough discussion of the method in ref-
erence 3,
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Considerable interest has been attracted by the sime
plicity of the method wilth the result that several arti-~
cles have been written for the purpose of presenting brief-
ly its more important elements. A paper by Harry A. Wil-
liams (reference 4) presented as a thesis at Stanford Unle
versity (later modifiled as reference 5), glves a very clear
presentation of the fundamental principles and includes
numerous examples that aid in understanding the appllication
of the methods A4 bDrief disgcussion is presented by E. F.
Bruhn (reference 6) in Aviation Engineering of March 1933,
None of these papers, however, considers the effect upon
the bending moments when axial load is preéesent in the mem—
bers of the frame.

The fundamental principle of the method of moment
distribution is the assumption that at first a flctitious
condition exists in the structure; this condition is then
modified, step by step, until the condition that actually
exists 1s reached. The initial filctitious condition is
that all the joints of the structure are rigldly flxed
against rotation, or "locked.! In this condltion the ex-
ternal loads create easily computed bending momente at the
ends of each span that is transversely loaded. The alge-
braic sum of all these "fixed-end moments'" at any Joint
constitutes an unbalanced moment that tends to rotate that
Joint. Under the hypothetical assumption that all the
joints are "locked," however, no rotation actually takes
place. One of the joints is now assumed "unlocked” and
allowed to rotate under the influence of its unbalanced
moment until a resisting momeant is duilt up that brings
the joint into equilibrium. The effect of this balancing
moment upon the stresses of the member is computed, and
the joint% ig %locked" agsain.

When a joint is unlocked, there are two distinct ef-
fects upon the structure., PFirst a moment equal and oppo-
site to the unbalanced moment at the joint is added. Fhys=
ically this moment is created by the resistance to rota-
tion of each member coming into the Jjoint., Thus each mem=
ber contributes a part of this resisting moment and, as
all the members rotate through the same angle, it has been
shown that the contribution of each member is directly
proportional to its "stiffness factor," For a member with
constant moment of inertia and without axial load this
stiffness factor is equal to EI/L.

The second effect of unlocking a Jjoint is the addil-
tion of & moment a% the far end of sach member, Assuming
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poslitive moments as those acting on the end of a member in
a clocizwise direction, the convontion that will be used
througnout thies paper, this moment is of the same sign and
equal to the mgment af the near end times a Hogrry~-over
factor," TFor members with constant moment of inertia and
no axial load, the carry~over factor is 0.5,

-

Tae process of unloocking and locking the Joints, one

at a time, is continned until all the Jjoints have been wun-

. locked, balanced, locked again, and the carry~over moments
recordsd, Asg each Joint is unlocked, the effect on the

. bending moments of the structure is computed. Tt will now
be found that some of the joints that have been balanced
and relocked have become unbalanced again, due to the car-
ry-~ove:r moments from other joints, The process must there-
fore dbe repoated, these Jjoints being valanced again and
new carrynover moments recorded. This procedure is con-
tinued until the unbalanced moments and carry-over moments
are small enoughk to be neglected. If all the joints are
now unlocked simultaneously, the effect on the bending mo~ -
ments of the structure will be negligible, The moments at
the ends of the members, thersefors, are the same as those )
that would have exigtsd if the structure had been allowed ¥
to deflect directly, instead of step by step, These mo-
ments nay be found by totaling the fixed~end moments, the
moments distributed to the member each time the joint was
unlocked, and the moments carried over to that end from the
other ond of the member, It is not necesgary to contlnue
the procéss whtil the unbalanced moments completely disap-
pear. The gperations may be stopped and the moments to~-

taled whenever the desired degree of accuracy, as indicet-
ed by the magnitude of the unbdalanced moments, is reached.,

When axial load, either tension or compression, is
prescnt in the members of a frame, the secondary moments
due to the combination of axial load and deflection alter
the fundemental method of moment distribution to no great~
er degree then the ordinary three-momen’ egquation is modi-
fied in the extended equation. The distribution factors,
carry-over factors, and fixed-end moments, instead of bolng
congtant for a gilven member, become functions of L/J.

The principal purpoge of this thesis is to develop a
method of rigid frame analysis that combines Newell's for-~
mulag with the Hardy Cross method, and present it in a
form that may be easily used by the engineer. In so dolng
the following steps have been taken:
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le. The formulas for carry-over factor, stiffness
factor, and flxed-end momenis in terms of
L/j have been derived.

2 A moethod of considering Jjoint translation has
: been developed.

3¢ OCurves have been plotted to make the use of the
formulas practical.

4, Simple numerical examples have besn gilven to il~
lustrate the use of the curves and show how
the method may be used as a simplification of
the extended three-moment equatlion,

5« An example of an airplane fuselage, the members of
which are subjected to both transverse and ax-
ial loads, has been glven to show how the meth-
o0& may be applled to complex structures that
heretofore have been impossible tc analyze ac~
curately.

When applylng the method to an actual prodblem, the
first values that are used are the fixed-end moments, next
the stiffness, or distribution factors, of the members, and
finally the carry-over factors. It might seem more logilcal
to develop the formulas for these guantities in this order;
however, the derivations ars simpler if they are treated in
the opposite order. This procedure should offer no confu-

slon to anyone famlliar with the principles of moment dige
tribution.

In the development of the formulas, the same general

methods of procedure are followed as were used by Profes-
© sor Cross in his original derivations except that the efw
fect of axial load has been included.

The writer wlshes to express his thanks to Professor
A« Se Nlles for suggesting the subject and for his help-

ful advice and vaeluable assistance in the development of
the thesle,

CARRY~OVER FACTOR
Assume a beam as shown in figure 1, rigidly supported

at B and pinned at A. & is free to rotate, but re~-
stralned from transverse motion. The axial load P is
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agsumed asg compreaeion.- With a._ givba moment MA applied

at A, ‘it is desired to find the magnitude of the re-
sisting moment at B, Mp.

Y

]

This problem is most readlly solved by the use of the
extended throe-moment equation. Assume the beam conslats
of two spansi! Tho left span AB 18 of length I, and the
right &pan has zero length.* Then using the three—~moment
eguation: ) L S
TELELQ_.,___ v 2M, l:I:lﬁl + Lp 52] - U Lip O -

I, i, 1=

T e s e

oI R

M, =0

i, 1.0 LB '
A = e
-I_+2MB(I+°>+° 0

or Mpa + 2 Mgf =

. o
My = 58 MA ‘ . ) (1) .
It should be noted that all moments have been assumed
positive when causing compression in the wupper fibers of
the besm. This is the sign convention used in the three-
nmoment equation. As the convention used for moment dlstri-
bytion assumes that positive moments are those acting on a
beam ir a clockwise direction, the sign of My 1is the sameo
for both syatems. However, when Mp is positive in ono

system, it is negative in the other. Honce using tho mo-
ment diatribution convention of signe, equation (1) be~ N e
c Omes . Tl R . L ) ) _"__ b - - Tt T . "_'_T_'—::_E

o .

5p Ma | ‘2_? .
*It is demonstrated qQun page 62 of reference 1 that 1f one
end of a mefiber without axial load is rigidly fixed egalnst
rotation, the moment at that end may be found dy ueipng the
three~moment equation, with sgero length of one of the spans.,
¥hen axial load is presgent in the member, the same lime of
reasoning may .be followed, showing that the extended threo-

'M;;-—-'+
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Expressed in worde, this equation states that when &
moment M} is applied at A, a moment egual o (a/Zﬁ)uA
is Puilt uwp at B. Thus the carry-over factor of s mem~
ber rotated at one end and rigildly eupported at the othexr
is o/2B. This expression is plotted ageainst IL/§ in
graph I. It is evident that when % = 0, +the condition

when no axial load exists, the carry-over factor is 0.5,
agreeing with the usual factor of the Hardy Cross method.

When the axial load i1s tension, the carry=over face
tor becomes 0n/2Pfy, which should be apparent from the
sinilarity of the three~moment equations for compreasion
and tension. The derivation is similar %o that for com~
pression, the hyperbolie functlons being substituted for
the circular. The derivation is given in the Appendix,
and the equation is plotted in graph I along with the
curve for compression,

In the Appendix is given a second proof of egquation
(). 1Instesl of using the extended three~moment equation,
the more basic principle of moment areas is employed.

STIFFNESS FACTOR

In the last section it has Peen shown that Mp =
- (a/2B)¥y, wusing the sign convention of the precise equa~

tions as glven in reference 1. Considering positive rota~
tions as clockwise, the angle through which point A ro~-

tates is the negative of the slope at 4 as glven by for-
mula on page 201 of reference l.

L
. 1] M.-M M,-¥%, cos T x M zl
..9A=-i=-—[2 1-&2 2 = cos—+-—1 sin —

4 L js‘ln% J J J
where M, = My
My, = Ny = - é% My

x = 0
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- o L
5 - . 1 (\-- 2‘-6:’ Mp-Hy My é-B- + My cos 3-‘
A‘ . P I ) J- gin =
i ) A j i
. N - a )
M, | ¢ cse ? 51 + 3

From ¢
valuos of

g . J . s
o and- B and substituted in tris expression, gilving:
oMy Tne® . a3 1 ad® 3P
9y = - = + S L T
P5® |12 " 2BL L ~ 3 ~ 2pL L
LML [ ged
I A L _
. BE1 8 N 3P '
or Mp = ——r——= = 04 — -—->
2 ag® -
L(B - 5 3
When a joint of a-rigid stracture is rotated, all the

ho equations on page 212 of reference I, the
L

6ot 3 and csec L have been found in terms of

members coming into the joint rotate through the same an-

gle. Hence

ing howmogenelty of materigl, B
Hence the moment required %o rotate a Joint is

members,
dividoed amo

ueg of efich member,

The ex

ness-fmctor
graph 11,
determine
L/

When ? = 0

cient is 1.0, giving a stiffness factor of I/L.

64 1s the same for all the members., Assum-
is also the same for all

ng all the members in proportion to the X val-
where
I 3B )
K= > (gts (3)
-1, ﬁa_az

3B
regsion will be called the "gtlff-

coefficient" and is plotted against 1L/j. 1in
To find the stiffness factor for a glven member,

the coefficlent for the appropriate value of
from the curve and multiply ‘by I/L

of the member.

s+ the condition of no axial load, the coeffi-

43
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In case a joint of a structure is pinned, and it is
thus known that the final moment at the ends of all mem-
bers Joining there must equal zero, 1t 1is a waste of time
to alternately lock and unlock the jointe A more direct
method is to treat this type of member as a special casse,
unlocking it after the first cyocle and leaving it unlocked
thereafter. (Unless the member has no fixed~end moments,
it must be considered locked during the first cycle, or the
fixzed~end moment formulas would have to be modified, a com~
plication that is not justified,)

Once a pinned Joint is unlocked and left unlocked, 1%
need not be considered further in the compubtations, as 1t
is balanced, and no moments can be carried over to 1%, for
it is incapadle of developing a resisting moment when the
far end is rotated. This means that when one end of a
member is pinned, the carry-over factor to that pinned
Joint is 78TO .

It requires a smaller moment to rotate one end of a
member through e given angle if the far end of that member
is pinned than if it is fixed. Hence the stiffness factor
of a member with one end pinned is less than 1t would be
if that end were fixed. Conseguently, the formula for
stiffness factor (equation (3)) does not apply when one
end of the beam is pinned, and a different formula must be
developede When finding the value of 6, in the deriva-
tion of equation (3), it was assumed that the far end of
the member B was rigidly supported, and hence that

Mz = = (g% Mpe In case the far end is pinned, ¥y =0
and the derivation i's accordingly modified:

. .
My cos = £ .
8 = - 3 _IL!iA..;___.____E.l =~ BA loos B. L
j sin ¥ F3 3 &
- . Matd LB 3 _ Mp LB
P L 33 L|~ B3EI

Uy = 48 6, % (é%)

The term 4E Oy is the same for all members coming

into the Jjoint, whether fixed or pinned at the far end,
and so the stiffness factor of a member whose far end is
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pinned becomes:

S1 /3N | L
L (2 | (4)

The coefficient i% has been plotted in graph II

along. with the coefficient of meﬁbers with the far end
fixed. When

Cujtr

- - B .3 Living a abiff-
=0, f=1 _and_;%s = 5 giving a atiff

ness faqtor of % x %, which agrees with the factor used
for this type of member when axial_IOad_ig_ngg%pcted.

When the axial load is tension, the derivation of the
formulag is similar, the only difference being the substi-
tution of the hyperboliec funotions for the circular. The
stiffness factors for the two cases are thereforeh

. TwLE T e . Pl R ot

1 3By
K= = (——15—"—f15 for far~end rigid,
L Mfy” - ap -
and T TR LT e mNa BTy TEEOE
- I 7 3 \ - ' | |
K' D S ! e hae l
p =L \45h> for far.end_p?nneé | (6)

These sxpressions have also Dbeen plotted in graph II,

Ia the Appendix the formulas for stiffness factor are
derived by the method of moment~areas. As a further check
the spscial case of a two~span beam rigidly supported at
both ends and free to rotate at the center support, with
an external moment applied at—the center support, is solved
by the extended three-moment equatione Solving for thoe di~
vision of moment between the two spans gives the same for-
mulas %E_derived above.

—_

FIXED~END MOMENTS
PR R - e

- --

' - . - s me s — - e -

A fixed~-snd moment is the moment that exists at the
ends of a loaded member when those ends ars riglidly fixed
against rotation., The most important loading conditions
are: uniformly distriduted load over all or part of the
span, uniformly varying load, and a concentrated load a%t
any point on the span. The formulas for these conditions
are developed in this paper and, as the principle of super-

]
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position applles,* the fixed~end moments due to any combiw
ngtlon of these loads may be found by adding the moments
due to the separate loads. '

: The extended three~moment equation is used in derlv-
ing the equations for fixzed~eond momenits. A beam of thrse
spans is considered, the two end spans being of zero length,
and the equations solved for the moments over the two inner
supports. These moments are the desired fixed-end moments.

In case the axlal load is tension, the derivation of
the formulas is parallel to that for compression. The on-
ly difference is the use of the hyperbolic rather than the
clrcular functionss The resulting formulas are the same
as those for compression except that sin L/j, cos L/J,
tan L/J, etc. are changed to simh L/J, cosh L/j, tanh L/J,
etcs, and a, B, and ¥ are changed to =~dyp, =By, and =¥y,

respectively.**

In all cases the curve for fixed—end moment when the
axial load is tension has been plotted esither on the same
sheet as the curve for axial compression or on the mnext
following sheet.

*I% is shown on pages 199 and 209 of reference 1 that, as
long as the axlal load remains constant, the total moment
at any point on a beam is given by adding the separats mo-
mentg of all the individual transverse loads on the bean,
It is only when the axial load 1ls varied that%t the principle

of superposition does not apply.
L L
= ¢sch = = 1>
o3 3

(I-'_ \2 .
3/

may be seen that this formula is the same asg that for o
as given on page 212 of reference 1 except that ecsc L/
has been changed %o c¢sch L/J, and the formula presceded
by a minus sign., Consequently, in substituting for o in
any formula when changing to the hyperbolic form, it is
necessary to use ~Cp e The same is true of the formulas

for By and vy,

**The formula for op is: oan = It
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FIXED~END MOMENTS FOR A UNIFORM LOAD OVER ENTiBE SPAX "
In figure 2 is shown a beam rigidly supported at A
and B and subjocted to & uniformly distributed load of
w pound per inch. The extended three-moment egquation for
spansg -1<2 and 2-3 is: L e e S
_ _ S :
-0 * - - 3
b e I, B I, B8 ¥gLs Oy why */o
—tt 4oy, (2SR 2 2) + =222
‘i Iy Iz Iz 41z s
where .= Ml = Ha;_ = Q B T h T .
M, = Uy . -
_ MS = ~MB
- _ R = |
Ll_ =- -Ila = Q . . ‘_=.“,§
. Lg = L : :
' D . . o L K
Ia == I - T - o '_"E
this becomoes _ o e
- My LB - Mg La = E%_l :
Similarly, using spans 2-3 and 3-4:
: : : 3
- My Lo - 2Hg LB = 47Y B B ’
Solving these f#o_éimuitahebﬁé 6dﬁdtigﬂé: h - ” - .- 
N TCT T T T T o
. sz - -
Hp = = Mpy = '
A BT (e/v) (25 + I

The expression {{4/vy) (2B + «)] has been plotted
egainst L/J in graph III. To determine the fixed-end ..
momentd for a glven beam with uniformly distributed load
of w pound per inch, divide wL® by the coefficient
found in graph III. When w is an up load, the left-~hand '
nmoment ‘Mp will be positive and the right~hand moment Mg

will be negative.
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It is apparent from the curve that when % = 0, the

coefficient L[(4/y) (2B + @) = 12. Thus the fixsd-end
moments are equal to wl®/12, which is the formula used
when axial load is neglected.

EXAMPLE

Before proceeding to the derivation of the other
fixed~end monment formules, 1t seems advisable to give an
example showing the application of the formulas already
developed,.

A symmetrical, thres~supporit, contlnuous beam with
cantilever overhangs will be used. A drawing of the beam
with a uniformly distributed load of 10 pounds per luch
is shown i1n figure 3. An axlial load_of compression is as-
sumed to be of such magnitude that = 2,56 for eack of

the spans 3BC and CD.

i

The first step is to compute the fixed~end moments.
MFBA is the moment created by the cantilever overhang.,

2 2
This moment is equal %o E%~ = lgiggl— = 4500. As the

load is an up load, a counterclockwise moment at B is
necessary to prevent rotation of AB. Hence the sign is
negative, and MFBA = =~ 4500 ine~l1ld, Similarly,

MFDE = 4500 in.,~1lb,

From the compression curve'of graph III, it is seen
that the fixed-end moment coefficient for % = 2.5 is
sgqual %o 10.,69. EHence the fixed~end moments are:

wL? _ 10(100)%
c 10.69

MFBC

=
b
Q
=]
il

Next the stiffness factors mmst be computed. As 4B
is e cantilever, HBA can never have any wvalue exXcepid

-4,500., Hence any unbalanced monment at Joint B must be
resisted entirely by BCe That is, the stiffness factor
of AB = 0. Similarly, the gtiffness factor of DE 1is
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also zero, Owing to the gymmetry of the beam, 1%t ig un~
necosggary to compute the stiffness factors of B¢ and

CD, as they are odviously squal, and any unbalanced mo=-
ment at € will be divided equally between (B and CD.

From graph I 1t is found that the.carry~ovar factor
of BC or CD 1s equal %o 0.73l. For convenlence, this
e entered in figure 4 at the center of each span,

The valwes of fixed~end moments are now written dle
rectly below the beam, as in figure 4. It 1ls apparent
that there is an unbalanced moment of 9,355 - 4,500 =
4,855 lny-=)lb. at Joint B and one of ~4,855 inv=lb. at
Joint D, Unlocking joint 3B first, it ie necessary to
add a halancing moment of ~4,855 in.~1b., This moment ig
all diptributed to BC, as the stiffnegs factor of AB
zeroes 4 line is drawn under the ~4,855 to indlcate that
the Joint is in balance. The carry~over moment of—Joint
¢ may be recorded now, or thig step may be dolayed until
after jointe C and D have been balanced, and then all o

is

£

the carry~over moments recorded at once. The latter meth-

0od is usually the simpler. Conssguently, joint C is ba

anced next, As there is no unbalanced moment at this Joint,

the balancing moments will be zero. Joint D 1is next Dba
anced, &a momsht of 4,855 in.~1lb. being distributed to CD
and O din.-=1b. to DEQ . -

All the Jjoints are now in balance, except for the
carry~cver momenits, which should now be recorded, The
~4,855 in,~1b. distriduted to BC 1 carried over as
«4,855 X 0,731 = «3,549 in.-1lbs %o C. Similarly 3,549
in.~1lb, ars carried from D %o €+ The carry-over mo=-
ments from ¢ to B and from ¢ t¢0 D are gzero, as mno
moment was distributed at Joint O

1~

1=

As the carry~over moments to Joint ¢ were squal and

opposite, and as no moments were added to joints 3 or

D,

all the Jjoints are still in balance. All threec Joints may
now be unlocked simultaneously without any effect wupon the

gstructure, ag there are no undbalanced moments at any joint.

The structure is therefore in equilibriunm without the ne-

cogsity of any hypothetically locked Jointe, and the mo=-

ments at the ends of the members may be found by totaling:

Kgy = 4,500 _
MBC = +9,355 - 4,855 = 4,500 11’1:5"11)0

il

4

I

cyd
-i:i.lt(

|

MR
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¥op = -9,355 ~ 3,549 = -12,904 in.-1bd.

Hgp = +9,355 + 3,549 12,904 in.~1D.
= -9,355 + 4,855 = ~4,500 in.-1lbe
¥pg = +4,500 in.-1b,
The extended threenmoment eguation gives a value fox
Mg = 12,903 in.~1D.

FIXED-END HOMENTS FOR A UNIFORM VARYING LOAD

A uniformly varying load is showa in figure 5. The
three-moment equations for this loading are:

2My LB - ¥y Lo = wi°L (o - 1)
M, La - 2¥p LB = 2wi L (B - 1)

Solving these for M, and Mz

Ma = wI® L
A = (I_-I_\B réga — az‘i T T
s | 2(a - B) ]

NG —

The denominators of the right-hand gide of these equa=-
tions are plotted in graph I¥. The corresponding coeffi-
cients for axial tension are given ir graph V.

If the maximunm load is at the left end of the beam,
the formulas for s and My are reversed numerically,
although in all cases the left-hand moment is positive and
the right hand negative under positive loads,’
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FIXED-BND MOVMENTS FOR A CONCENTRATZD IOAD AT MIDSPAN

The loading is shown in figure 6. Tho three-moment . .
eguations for this loading are: -
o - L -
sin =
.2 2, 1
. 2¥p LB - Hpg Lo = 6WJ — - 5
. sin % 2
L. J — -
e fotn &
My La - 2y LB = 6W] T 3
. 8ln =
S L J . =
. . ) -~ e |
Solving for M and Hx:
& - Sl - AR C T
X4 — *rr — WI‘ ) ~
PAETTERT OANT I 2B+ - .
5/ |8(sec 2~ 1) '
3(seec T+ -
: 2d ~ . .. .
: L : -l N |
The denominator of the right-hand side of this ex- .
pression has been plotted in graph VI. _ .
T

FPIXED-END UOMENTS FOR 4

SCOWCENTRATED LOAD AT ANY POINT OK THE SPAX _ _
The dimensions are shown in figure 7. The three-mo- .
rnent eyuBitions for this type of load are:
- -- - -—_: '“: . - -:-'“ - -- 3 : [-E in "‘.b‘ b
- 2Uy 1B - Up Lo = oW ;;;—i-— =
- - .l L. .j . -
. : : o BN - )
. - . +
L S . sin 3 a
My Lo - My Lp = 6WYR | ——F - =
. . L, L
sin 3
L -

Solving for M, and Mp:
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L a L
r 8in L3 n sin I3 a
svr |28 (—5 - ) - (T %
sin 5 sin 3
¥y = 2 2
G"—) (4 - a )
J
b L e L
=3 LJ B s:r.nLj a
6WL | (————= - —> - 28 ( = -2
sin ? L sin
M:B-

Whon £ = 0.5, thess equations reduce to those given
for the particular case of the load at midspan.

In order to use a larger scale amd hence improve the
accuracy of the readings, the expressions for My and ¥p

have been plotted as the ratio of M¥y and Uy to the

fixed—~end moments that would exist at A and B respec~
tively if the axial load were zero.

When there is no axial load, the formulas for fixed~
end moment for this type of loading are:

- a\ /dV
m(2)(2)

2
& D
o L (L> CE)
The curves of graph VII give the ratio Cp = Ma/Hy .

Ci is plotted against a/L, a Dbeing the distance from
the left end of the beam %o the load. OCurves are drawn
for several values of IL/J. In order to find M, the
value of COp must be interpolated between the curves.
Straight-line interpolation will give a maximum error of
less than 2 percent, and in most instances the error will

be less than 1 percent. If greater accuracy than this is
necesgsary, the formulas may be used.

=
>
!

o
i
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When €, has been found, ¥y may be found by the
expression: : - L — e
. 3
Cus = wn (2 (R
Ma = W (L> (L) oA
To find the value of Mg, wge the same curves but

read the value of the coefficient for b/ rather than
a/l as before. Call this coefficient 0Cg.

Then My = - WL (a\ (2) 3

For convenience in finding the values of MA and g
after the coefficients Cs ané Cp have been determined,

a curve of QL) (b) has been plotted against a/L“in

graph VIII. 'To find the value of (&/I)°(b/%), use the
same curve but read the value for b/IL rather than a/L
as befcre,

Fer example. suppose it is desired to find the fixed-
end moments Ffor a beam 100 inches long loaded with 1,090
pounds at a point 70 inches from the left end of the beam.
The beam is shown in figure 8. L/J 1is agsumed to be 2.8
in comrression.

- D . B9 0.
Ciy = 1.625 —'élg_lgrl_ (1.625 ; 1-406) ] ;537
%.0 = ﬁe_

-5 -

'I!:l"

From graph VIII at & = o, 7, fa\ ( = 0. 063:

* e

+ o Hp = 1,000 X 100 X O 063 X l 537 = 9 670 in.—lb.
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" From graph VII at % = 0.8:
Cm = 1.389 - 222 (1,389 - 1.,260) = 1,337 o
B . 0.5 .
b aN\°" /b
= = «D, = — = . 7.
From graph VIII at I 0.3 (L) (L) Q.14
. . ¥g = - 1,000 X 1,000 X 0,147 X 1,337 = ~ 19,640 in.=1ba

FIXED~-END MOMENTS FOR A UNIFORM LOAD OVER PART OF SPAN

The loading 45 shown in figure 9. The three—moment
equations are:

os &

1p2 - 13 cos -1 a
2,18 - Ugla = Bwi~ == 4 23 (-—~iL—-— + sin &)
L ta.n

i

~ &\
[ e 2Gees B
- i—+

B sin % _J

Solving for Mp and MNp:

T Oty S

<L> (48°- 7 873 5

tt
[s3]
4
(R

Lo - 2YpLP

2 [1 - (cos .

1
a
e
et |t D
Coty
o=
1
T
Ny
—
.
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e . [(cés_f 3/ 13 2 sin % % .
= Q) - THer ¥ 0
gii - 2 [1 - (cos é gi] ) 2 ”- :
; —26{ l’-sinza -@:)})
3 J

h‘l'ﬂl

¥When there is no axial ioa&, the formulas for fixed-
end moments for this type of loading are:

o - W1P (L) [_ 8yt é® (a\ 1 WL% ®4,

E .
Yo = o HLZ (8 ] & _ <§>-] - -
.:{Bo 12 . L) i:L 1 3 o J wL CBO ’

The curves of graphs IX and X give the ratios
Cy = HA/MAO and GB = MB/HBO plotted against a/n for

several values of IL/j. The curves are plotted Tronm

a/L = 0 %o a/L = 0.5. To find the fixed-end moments
wanen &/L 1s greater than 0.5, find the fixed-end moments
for e uniform load over the entire span and subtract the
fixed~end moments thet would be caused by a load over the
part of the span that_ is not loaded.

—_— e — e — - _—_ —_————

For convenience in computation, curves of CAo end
CBO have been plotted in graph VIII.

As an sXample, suppose 1t is desired to finmd the
fixed~end momehnts of a beanm such as that shown 1n figure
10, The span is 100 inches and is loaded uniformly with
10 pounds per inch for a distance of 70 inchesa L/3 1is
assumed at 3.5 in compression.

o

First find the fixed-end moments due to a positive o,
load of 10 pounds per inch uniformly distributed over the
entire span. This moment is found by the use of graph
IiI. :

LT

7l

1]
VoW
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a 2
Mg = ~ Hp = Wg = loéfgg) = 10,980 in.-1b.

Next find the fixed-end moments due to a negative
load of 10 pounds per inch extending over the 30 inches
from ¢ %o 3B. In this case the load is on the right
side of the beam, whereas the curves of graphs IX and X
apply to loads extending out from the left side. Hence,
the curves must be reversed and Cs wused in finding Mp
and Cp 1in finding Mp.

From graph IX we find for %'= 0.03:
0y = 1.171 + 28228 (5 255 - 1.171) = 1.187

0
From graph VIII at % = 0.3, Cp = 0.0290

Mz = = wL2 Oy Oy = +10(100) X0.0290X1.187 = 3,440 in.-1b.

From graph X for 0.3, o find:

(@]

+ Ho

Cp = 1.396 (1.613 - 1.3968) = 14439

ol
o=

From grapk 8 for = 0.3, GBQ = (0,0070

e -

iy =+ wi® 0y Cp = ~10(100)X0.0070%1.438 = - 1,007 ian.-1b.

The net moments at A and 3B due to the load of 10
pounds per inch extending over 70 percent of the span are:

¥y = +10,980 -~ 1,007 = +9,973 in.-1b,

gy = ~10,980 + 3,440 = ~7,540 ine=1D«
SECOND EXAMPLE OF CONTINUOUS BEAM AWALYSIS

Figure 1l shows the left half of a beam that rests
on five supports. The beam and loads are symmetrical
about support De It is assumed that there is axial con-
pression in BC and CD giving Q = 3 for both thess

members. The value of I 1s constant for the entire beam.
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Joint —D may be assumed rigidly fixed against rotation
and never unlocked, as any fixed-end noment or moment be~

ing carried to 1%t is always exactly balanced by the symmet~
rical moment on the other half of the beam.
is never any unbalanced moment at

lock 1it,

> me. Hence there
P, and no need to un-—

In thip problem the work has been carried to srach

greater accuracy than necessary in order to show the agree-
ment with the extended three-moment equation.

The values

of stiffness factor, carry-over factor, and fixed—-end mo-
ments nave been taken from the tables, where they may be
obtainsd with more precision than cen be read from the

cuIrves.,

From graph I_or table B!_ﬁhg carry-over factor for

-

L -
3 3

is found to be 0.91893. TFrom graph II or table B,

the stiffness factor of BC, which has a pinned end at 3B,

ig found to be 0.10206 and that for CD

Hence any unbalanced moment at © will be distributed
0.10206/(0.10206 + 0.65605) = 13,462 percent to BC and

86,538 percent to CD.

The fixed—end noments are fougd as fgllqwgé

Hpg, = +50 X 100

Mrag

Il

¥
Pam

Mo = ~ 31560

o oy 20(50)3
D6 17.072

= =500 X 80 X O.144 X 1.2133

+500 X 80 X 0.096 X 1.2590

- 2
= e l—QL-B_Q-)_ = -—2,605.9 in.~1lb.

= +3,748.8 in(“ b-

+5,000 in.=1be

~6,989.8 in.~1b.

il

Il

+4,834.6 in.~1%.

_—— -

The operations involved in unlocking and JYocking the
Joints are indicated in figure 12. First the fixed-end

moments are recorded as shown.

by a.dd.lng 1,989¢8 in.~1bs %o
0f the cantilever is zero.

Next joint B 1is Dalanced
BC, as the gtiffness faotor

Phe moment of 1,988.8%X0.,91893=

1,828,5 1n,~1b, is immediately carried over to T. Joint ©

now has an unbalanced monent
4,057.2 in.~1b, This momout
-4, 057,82 in.~1lb, distridputed
0.13462 = ~546,2 1in.=1lbs. to
~3,B611.0 in.-1b., to €D, As
moent 18 carried over to B.

of 4,834,6+1,828,6-2,608.9 =
is bmalanced by a moment of
te CB and CD; ~4,057,2X

CB and the remainder,

BC is pinned at B, xno mo~
However, =3,511,0X0,91893 =

~3,22644 in.~lb, must be carried ovsr to D. All the

[ | e
_—

a

ol

il b

i

H

il

i

i
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Joints are now in balance, joint D beingz balanced by the
squal and opposite moments from the other half of the beam,
and the moments at any joint may be found by totalinge.

Gcnsidéring'bending moments positive when the upper
flbers are in compression; Mp = —~ 5,000 in.-lb., Mg =

~ 6,11649 in.-~lb,, and Mp = = 522.4 in.~1b. 4 solution

by the extended three~moment equation gives values of
"'53000, "6,116'8, and. ~522.5 inn"lbc for MB: Mg: and HD’
respectively., .

THIRD CONTIXNUOUS BEAM EXAUPLE

When an unsymmetrical beam of four or more supports,
or a symnmetrical Peam of six or more supports, or a rigid
frame of three or more members is analyzed, the moments
do not become zero after the first cycle, as in the sxam-
Ple of figure 11, but the process must be repeated until
the unbalanced moments are small enough to neglect.

FTigure 13 shows half of a symmetrical bsam resting
on seven supports and loaded at the ead of the cantilever
so that the moment at A = 1,000 in.~1b., the top fibers
being in tension. The spans are equal in length and the
moment of inertia is constant throughout. 4Axial compres—
sion is assumed of such value that L = 3 for A3, BC,

and CD. This beam, without axial load, has been analyzed
in refersnces 4 and 5, and the results will be compared
with those that include axial load to show the importance
of secondary moments in continuwous beams subjected %o nigh
compressive loads. A solutior of this prodblem by the ax-
tended three-moment equation requires the solution of threse
simultansous equations.

The carry-over factor is 0.9189 for all spans, found
from graph I or table B, The stiffness facter of AB is
found from the "far~end pinned" curve of graph II or table
B and is equal to 0.10206. The stiffness Ffactors of BO
and CD are found from the "far—-end restrained® curve of
graph II or tabls B and are both equal to 0.65605. 4% B
the distribution factors are 0.10206/(0.10206 + 0.65605) =
13,46 percent %to BA and 86.54 percent to BC., At C
the distribution factors are 50 percent to each member.
These are designated by the symbol D and are recorded at
the joints in a space provided as shown in figure 1l4. The
carry~over factors are indicated by the symbol C and are
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written at the center of each member as shown. The only
fixed~end moment 1s at the cantilever and is equal %o
15000 in u"‘l_-b_- . .

. Joint A is balanced first, -1,000 1in.~1b., being
added to AB, and =-1,000 X 0,9189 = -918,9 in,~1bs, car-
ried over to B, This leaves an unbalanced moment at 3B
which is balanced by 918.,9 in.-1b, distridbuted 918.9 X
13,46 percent = 123.7 in.~1b. to BA and 796.2 in.~1b.
to BC. As A is a pinned joint, no moment can be car-
ried over %o it, but 795.2 X 0.9189 = 730,6 in.~lb., must
be carried over to C. This unbalanced moment at ¢ ia
balanced by ~365,3 in.-1lb. to both CB and CD. Carry-
over moments of =~365,3 X 0.9189 = ~335.7 in.,~1lb. &are re-
corded at B and D. ) ) ) -

The moment at joint D 1is balanced by the similar
moment from the other half of the beam, but it must be
noticed that joint B is no longer in balance, having had
~335.7 in.~1b. carried over to it since 1% was balanced.
Thig moment must therefore be balanced, the balarncing mo-
ment distributed to BA and BC, +the proper moments car—
ried over, and the process continued until the desired ac-
curacy is reached. Figure 14 shows the computations car-
ried through nine cycles, and the totals are indicated.
The total after nine more cycles is also recorded, and the
values given by the extended three-~moment equation are
given &s a check, The values when axial load is neglected,
a8 glven by Williams' results, are also recorded. It
should be noted that all the momente except that at the
cantilever are many times as large when axlial load is con~
sidered as whén if is neglected. The reason for thils 4if-
ference is that a high valus of L/J was used, If a low
value c¢f L/j, say 1.0 or 1.5, had been used, the agree-
nent between the two methods would have been much better.

ik

i

TFFECT OF JOINT TRAWSLATION . o

—
Y
i

There are two types of Jjoint translation that willl be
considered in this paper. In the first type the amount of
translation is known, a8 on a continuous beam with a known
or assumed deflection of one or more of the supports, In
the second type the amount of translation 1s unknown but

the total shear cn & given section is known, as on & rec—

tangular bent subjected to side loadss

+
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When the amount of deflection is known, formulasg for
considering the effect of the deflection upon the moments
of the structure may be derived by the extended three-
moment equation. When the amount of deflection is unknown,
a nmethod that was developed by Professor Clyde T. Horris
of Ohio State University (reference 7), for the case when
axial load is neglected, 1s modified to include the effect
of axial load.

JOINT TRANSLATION - AMOUNT OF TRANSLATION ENOWN

The translation of one or more Jjoints of a rigid
structure modifies thée bending moments throughout. In
both the basic and extended three-moment equatlon the ef-
fect of translation of one or more of the supports is de—
Yermined by adding defléction terms to the load terms of
the equation. These deflectlon terms are the same whether
the basic or extended equation is used.

In moment—~distribution analysis, deflection of the
joints creates sadditional fixed-end moments. Figure 15
shows a beam rigidly supported at both ends. 3B is de-
flected an amount § above 4. It is desired to find
the moments M, and Mp that exist at the endg of the

beam. The extended three-moment equation for spans 1-3,
and 2-3 is: ' ;

.nL,q, +2 I, By +I'353>+M3Lzaz _ 6B(yy-¥2) +6E(y3—-y3) -
Il Ma Il I- Iz I‘l IJZ
Whers
¥, = ¥, = o]
¥, = -I.EB
1 = I“S = Q0

this becomes:

2MyLP HpLa 685
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Similarly, using—spans 2~3 and 3-4:

— 7 Mplo  2MpLB _ 6EJ
o I I L
Solving fBr-'MA_-AndP_Mﬁz
- ¢ o . o SEST 1
R B €

P N T = A

or ' _ g o

where ~--. K=
If the equation is written

= Mp = - SEER '
My = Mp = - S5 (7)

then R 1g positive when the deflection is such that the
menber 1ls rotated in a clockwise direction from its orig-
inal location, The fixed-snd moments due to Jjoint -deflaec~
tion have the same sgign at both ends of the span, both
having the sign opposite to that of R. The guantity

28 - o 4in equation (7) is a funetion of I/J and has
been plotted in graph XI.

TXANPLE OF CONTINUOUS BEAM WITHE DEFLECTION OF SUPPORTS

Figure 11 shows the left half of a symmetrical con-
finuous beam resting on five supports. This problem was
previoisly anelyzed assuming no deflection of the supports.
This sanme beam will now be consldered assuming that sup~-
port 3 deflects 0.8 inch downward. I is constant at
0.2 in,*, E = 29,000,000 1b.,/sq.in.,, and IL/j is assumed

|
LT

R - 4

"7',; ‘
i b

equal to 3,0, as before.. _ . e

K= &= 222 20,0025 for both BC and OD. 4s the
deflectlon of joint © tends to rotate BC in a clockwise

o
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and €D 4in a counterclockwise direction. Rpg = % = 368 =

0.0l and BRByp = ~ 0.0l. The fixed-end moments due to de-
flection of C ars therefore:

= _ 6EKER _ _ 6X0.0025X29000000%001 _ . wapn
Upye = ¥rgy = = Spen = - B T = « 3650.9

i

oD DG _

In figure 16 these moments have been added below the
fixed~end moments causged by the loads. The remainder of
the solution is similar to that when there is no deflec-
tion of the supports, and is recorded in figure 16. The
.pending moment at € is found to be 5,369.3 in.~1lb. and
that at Dy 1,50544 ine=1lb., both with the lower fibers
in compressions The extended three-moment equation also
gives values of 5,369,3 and 1,505.4 in.~1b. for the moments
at C, and D, respectively. ST

SECONDARY MOUENTS IN TRUSSES DUE TO JOINT TRANSLATION

When a rigid joint truss is subjected to a system of
external loads, the individual members are stressed by ax-
ial tension or compression. As a result, each member is
elongated or shortened by an amount equal to PL/AE. Thie
change in length of the members causes the displacement of
the joints of the structure, with the result that bending
moments are developed at the ends of the members. The val-
ue of R for each member can be determined by the use of
a Williot diagram or the cotangent formulas as explained
in Ar%. 11~3 of reference 8, ¥With R known, the fixed-
end moments of each member can be found by the use of equa~
tion (7). These fixed-end moments can be balanced and dis-
tributed in the usual manner until the desired degree of
aceuracy of the secondary moments is obtained.,

An exXample of this type of analysis without consider-
ing the effect of axial load, except for determining the
change in length of each member, is given in Thompson and
Cutler!s discussion of Professor Cross' paper. (See ref-
erence 2.) The method is the same if axial load is con~
sidered except that graphs I to XI wonld be used in deter—
nining the various factors and fixed-end moments.
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. TEE RECTANGULAR BENT

Figure 17 shows a single-story rectangular bent sub-
Jected to a side load S, If the two columns are consid—
ered free bodles, they are acted on by axial loads, shears,
and end monments, as snown in figure 18, Part of the side
load S 1is carried as shear in column AB  and the rest

in column CD. Hence 8; + Sz = S. Taking moments about

A e T e aEE e e
¥pp + Upp + Hgp + Mpg ~ S;h - S;h=0

or . . _ . --3¥ ="h(s, + ;) = Sh

-~ - — R— T v

This is known as the "bent equation' and states that
the sum of the moments at the top and bottom of the columns
of a sbtory is equal to the shear on the story times the
story helght. This is an eguation of equilibrium that
must be satisfied in the analysie of all rectangular bents.
The equatlon is valid for a dbent of any number of columns
and for any story of a multistory bent. In all cases the
load & 1s the total shear on the story under considera-
tion, —— - R : CoLL ZewembootDomman o orny

In order to analyze a rectangular bent by moment dig-
tribution it is first assumed that the horizontal bsans
are infinitely stiff., Imn this condition the structure is
allowved to deflect laterally until the sum of the resgigt~
ing moxents at the ends of the columns becomes squal %o
the produect of the shear and the story height.

In order %o determine the effect of the deflection
it is necessary %o know how the resisting moments are di-
vided among the columnse As the columns are connected by
rigid bhorizontal beams, the deflections of all the columns
are equal. (The change in length of the horizontal beams
due to axial load is negligible when compared with the de-
flectlion of the columnsg dus to bending.) With the hori~-
zontal beams assumed infinitely stiff, equation (7) may be
appliel to find the moments at the ends of the columne
caused by the deflactlon. Thig gives:

gtpp:f MbotEPm_=:f{(§éé_ “l“ fﬁ? eacé ?ol?é%t

4s" B, L, and § are the same for ailigbiyapg;ffﬁﬁ;

oo
i ikl
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resisting moment is seen to be divided in proportion to
I1/(28 - a). Therefore, the first step in the analysis of
a rectangular bent isg to divide the equilibrant of the
story moment along the columns ¢of each story in proportion
to the value of I/(2p - a) for ecach column, These bal-
ancing moments are divided equally between the top and
bottom of sach column, . - :

This division of moments satisfles the Peant equation
but leaves unbalanced moments at the joints of the strue—
ture. If there are:any loads between panel points, the
fixed~end moments caused by these also contribute to the
uwnbalanced moments at the joints. In order to eguilibrate
the unbelanced moments it is necessary to assume that the
horizontal beams loge their infinite rigidity and allow
the Jjoints to rotate until sufficient resisting moments
are created. The balancing moments are distributed in
proportion to the distribution factors of the members, and
moments are carried over to the far ends of the members.
During this step it is necessary to assume that the Jjoints
are restrained from translation in order that the expres-
siong for distribution and carry-over factors may be ap-
plied. After these balancing and carry-over moments are
applied, the bent equation is no longer satisfied.. There~
fors, the horizontal beams are again assumed infinltely
stiff and the structure agasin allowed to deflect until the
bpent equation is again satisfied, The operations are con-
tinued until the error in the bent equation and the uun-
balanced moments at the joints are small enough to neg-
locte

EXANPLE OF SIHGLE-STORY RECTANGULAR BENT

Figure 19 shows & single—story rectangular bent sub—
jected to a side load. The dimensions are given in the
figure. Ig = Igp = R%Igge It 1is assumed that L1/j = O

for BCG and 6D and L/J = 2.5 for column AB. Al-
though the side load will put axial compressiorn i= AB
and BC and tension in DC, the exact amountas of these
loads are unknown until the moments at the ends of the
columng are determined, 1 the umsual case the amounss of
these axial loads are negligible, the only axial loads of
large magnitude being due to vertical loads oun the bent.
However, for accurate aneslysis the structure may be ana-
lyzed a seconé time, using the moments found in the first
analysis to correct the axial loads in the columns. The
problem given here is to be considered merely as an exam~
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ple to- illustrate the use of the system and not as illus“
tratiyp of conditions that might be met in actual design.

As I is ﬁhe samne for both columns, the story moment
equilibrent is divided between the. columns in inverse pro-
portion to 2P -~ a. The value of 28 - & may be read
from graph XI. I% is found that

"—MAB : *"CD = 1 : 1 123

"n E o S
e

That is, 1/(1 + 1. 23) = 47,2 percent of the story
rnoment 1sg resiste& by moments at the ends of AB and 52.8
perceant by moments at the ends of CD., As the moments at
“he top and bottom of each column are equal, the equll i~
brant of the story moment is divided 23.6 percent to the
top and 23.8 percent to the bottom of AB and 26,4 per-
cent to the $op and 26.4 percent to the bottom of CD.

ke

The shear load is 180 pounds and the story height 20
feet; therefore the story moment is ~180 X 20 = ~ 3,600
lbe~ft. The eguilibrant of this, 3,600 Id.~ft. 1is &Ié
vided 3,600 X 23.6 percent = 850 1b.~ft. to the top and
8850 1b.~ft. to the bottom of AB. Similarly 3,600 X 26.4
percent = 950 1b.-ft. is digtributed to the top and 950
1b.=fti %o the bottom of CD. '

This leaves an unbalanced moment of 850 1b.—ft. at
Joint - B and 950 1b.-ft. at joint ©. Before These can
bPe balanced, the distribution factors of the members must
be determined. I/IL is constant for all the menbers, so
the distribution factors are proportional to the coeffi-
cients found in graph II. These coefficients are 1.00
for BC and €D and 0.772 for AB, Therefore the dis—
trivution factors for joint 3 are O. ¥72/f1+ 0.772) =
43,5 percent for A3 and 58.5 percent for 3BC. At joint
C the~"distribution factors are 50 percent for each of the
members. The carry-over factors of 0,5 for BC and CD
and 0.731 for AB are found in graph I.

IS T AL L _.--.i._": ttaL ot g - - =3

Tae Dalancmng momente at B are there*oro -850 X—43 5
percent = =370 1lb,-ft, to BA and =850 X 5645 = ~480
1b,~ft, to BC. At C the balancing moments ate ~8950 X
50 percent = =475 lb.~ft. to both ¢B and OD. =370 X
04731 = =371 1bh.=ft. are carried ovér to A, «475 X 0.5 _
= w238 1be=ft. are carried over to D and 3B, and ~480 :
X 05 ¥ 8240 lbe~f4. are carried over to OC.
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If the moments on the ends of the columns are added,
1% will be found that the sum is no longer equal to 3,600
1be~ft. The valueg = 370 = 271 - 475 = 238 = ~1,354 Lbes
-ft. have been added to the columns since the bent equation
was satlisfled. This quantity, ~1,354 1lb.~ft., is called
A¥ and 1s found by totaling all the balancing momenits and
carry~over moments that have bsen added to the columns
since the last time the bent eguation was satisfied.

The quantity AKX 1s vreated exactly the same as tho
original story moment, The eguilibrant = AY is divided
among the columns in proportion to I/(2B -~ @), and the
process continued until the unbalanced moments at the
Jjolnts and the unbalanced story moment are small enough %o
be neglected, .

In figure 19 four cycles have been completed. The
resulting moments are My = 910 1lb.~ft., My = 800 1b.-f%.,

My = 809 1b.~ft,, and H¥p = 1,079 1lb.~ft. The moments

acting on the columns are all positive, and thelr %total is
3,598 1lbs=fte The error of 2 1b«~fte in the sfory moment
is negligible.- ;

This same bent was analyzed in reference 4, assumlag
no axial load in the members. The results in thig caso
wero Mg = Mpy = 969 1be~f%. and Mp = Hg = 831 1lbe~fH.

Examples of multistorlied bents and bents subJeected %o
unsgymmebtrical vertical loads have been gilven in reference
4. When axial load is included, the only difference is
the use of graphs I to XI in determining the various fac-
tors and fixed-end momentse. The principles involved in
these two cases are the same as those in the single-story
bent, and if these are thoroughly understood, there shounld
be no difficulty in applying them to the more complex
structuores.

APPLICATION TO AIRPLANE FUSELAGE TRUSS

Figure 20 shows the central portion of the side truss
of an airplane fuselage. The structure has been analyzed
for the various conditions of loading required by the De—~
partment of Commerce, and the members have been selected,
assumling a restraint coofficient of 2, with the assumption
that each member is subjected to pure axial load.
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As is usually the case in airplane fuselage trusses,
however, some of the members have side loads appliad bew
tween thoe panel points; and in the landing conditions
there are concetitrated moments applied at the points where
the chassis members join the fuselage. The effect of these
conditions will be determined by moment Ailgtribution and
the margins of safety computed. If desired, the sscondary
moments due to Jjoint translation may be inclunded in the
fixod~eand moments. Thess will be small, however, and the
refinement hardly Jjustifies the amount of labor involved
in computing thems They are not included in the examplo.

A3z most of the members in the central part of the fu-
selageo are designed for three~point landing, this condi~
tlon o loading will be used in the example. The load
factor for thig condition is 5.85.

Table A glves the physical properties of each men-
ber and the axial load in the three~point landing condi~
tion. The values of 1/J have beon computed and record=
ed in the tadble, the letter following the figure indicat~
ing tension or compression, and the carry-ever and stiff- .
nese factorsg have been determined from graphs I and II.
The distribution factors have been computed and recorded
or the figure at each joint, and the carry~over factors
have boern written on sach member.,

In this airplane, four of the items of loading are
attachod to the longerons between panel pointse Although
the welghts are applied at an angle of 149 to the thrust
axls in the three-point landing condition, only the compo~
nents of load perpendicular to the members are used in
figuring the fixed~end moments. The components parallel B
to the mémbers have a slight effect upon the axial loads,
but this is small enough to be neglected, The loade that
contribute to the fixed-~end moments are:

1. Instrumenbs -- a concentrated load of 20 pounds R
{appligi on 2U~4U, 13 inches from 2U, -

2. 'Baggage J?'q:éoncentrate&"16éa'qf 100 pounds ap-
- ' plied on 5L-6L, 14 inches from 5L,

3« Passengers -~ two concentrated loads of 364
pounds each, one applied on 3L-4L, 27 inches
.. from 3L and the other applied on 4L-5L, 21
- -~ inches from 4L,

e
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4, Tloor load -~ a uniformly distributed load of
0.769 pound per inch extending from 3L to bBL.

The loads glven are the bvasic loads. In order to
find the design loads they must be muitiplied by half the
load factor of 5.85., (Ealf the factor is used as there
are two side trusses, each carrying half the load.) The
flixed~-end moments have been computed, using the appropri-
akte formulas and curves, and the results recorded on fig=
ure 20 at the ends of members 2U-4U, 3L~-4L, 4L-5L, and
5L~ 6L,

In addition to these fixed-~end moments there ars two
concentrated moments applied to the fuselage by the chas-
sigse 4 counterclockwise moment of 7,520 in.-1b. is ap-
plied at 3L, and a counterclockwise moment of 11,160 in,~
1bs is applied at 4L, These moments may be considered as
fixed~end moments on the chassis members. A counterclock-
wise moment applied to a Joint means a clockwise momentd
acting on the end of the member; so both of the above mow
mente are positive. They are treated exactly the same as
the other fixed~end moments at the joints, When these
moments were computed in the chassls analysis of the air-
plans, 1t was assumed that the fuselage was a rigid, un-
vielding structure. This is not a true assumption as the
fugelage joints are capadle of rotation to a slight de-
gree; hence the actual moments applied at 3L and 4L
would probably be somewhat less than those given, A pre-
cise solution would involve a very complicated analysis
as the chassis presents a three-dimensional probdblem, with
the members capable of carrylng torsion as well as bend-
ing; so no modification will be attempted hero. The val-
uwes given are probably very close to the actual values,
and the error is Delleved to be small.

Join%s 2U, 2L, 7U, and 7L have been agsumed rigildly
supported, This is obviously an erroneous assumption, but
- the error involved is small, Joints 23U and 2L are
where the engine mount is attached. Since the structurs
forward of these Jjoints 1s relatively rigid, the assump~
tion of complete rigidity is probadbly nearly correcht. Al-
though in practice it might De necessary to analyze the
entire structure aft of 2U-2L, for the purpose of this
exemple it seems desirable to consider only that portion
forward of 7U~7L. To do this, some assumption must be
made at joints 77U and 7L. The jolnts might have been as-
sumed pinned with as much justification as assuming rigid
Joints, or they might have besn assumed as 50 percent rig-
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id, as advocated by Bruhn in reference 6. The latter meth=
od appears to be the most accurate, but it would necessitate
a new set of curves for stiffness factor, and so is hardly
practical. Owing to the assumption adopted, the moments
found in members 6U~7U, 6U~7L, and 6I-~7L should not be
expected to be as accurate as those farther forward, as the
effect of an error at any Jjoint is more noticeable on the
members coming into that Joint than on members that are
farther removed,

With the fixedwend moments, digtribution faetors, and
carry~nver factors determined, the process of balancing
the moments may be commenced, In the figure, the joints
have been balanced in the order of the magnitude of tholr
unbalanced mements, and the carry~over moments recorded as
soon as a Joint is balaneed, as this method gives the most
rapld convergence of results. The o¥der of balancing was
411' 3IJ|| 5Ul 61#, 51]. 4U| GU' 41], 5U| 511, GU, 4U. 41!’ 5U’ 31:1
6L, and BL. 4s soon as a Joint wag balanced for the last
tims, 1o more moments were carried over to it, 1n order
that the cheek of XM = 0 for each Joint might be odb-
tained« The totals of the moments at the joints are re-
corded in the figure, The moments obtained by applying
the Hardy Cross method to this truse without correcting
for ghe effect of axial loads aroc shown in refereonces 4
and « - —— - S . B LI

ity
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APPENDIX I

Definitions

l. TPFixed-End Momentg: The momsents that exist at the
ends of a loaded member when those ends are rigidly fixed
against rotation are called the fixed-end moments of that
membar,

2. Stiffness Factors: A number proportional to the
couple that must be applied at one end of a member to
cause unit rotation of that end, both ends of the member
being assumed to have no movement of translation, is called
the stiffness factor of that member, The stiffness factor
will depend on the degree of restraint of the opposite end
of the member from that at which the couple is applied.
In this paper two such cases are considered, that in which
the far end is fixed against rotation and that in which
the far end 1s free to rotate.

3. Distribution Factor: If a moment is applied at a
joint where two or more members are rigidly connected, the
distribution factor of esach member is the percentage of the
applied moment that is absorbed by that member. The dis-
tribution factors of the members at a Jjoint are proportion-
al to the stiffness factors of those members. The sum of
the digtribution factors of the members at any Jjoint mus?t
egual unity.

4, Garry-Over Factor: 1If a beam is simply supported
at one end and fixed at the other, and a moment is applied
at the simply supported end, & moment is developed at the
fixed end, The carry-over factor is the ratio of the mo-
ment at the fixed end to that at the simply supported end.
Tor o member without axial load and with constant moment
of inertia, the carry-over factor is 0.5.

5« Sign Convention: _ » o
1) A clockwise moment acting on the end of a mem-
ber is positive. Consequently, a clockwise moment acting
on a Joint is negative. This is in agreement with the _
convention used in reference 1 at the left end of a member
but opposite to that convention for the right end of a
member., Great care must be taken to interpret correctly
the signs of bending moments obtained in the moment-dis-
tribution analysis before proceeding to the determination
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of bending moment between the ends of a member or comput—
ing marging of safety.

2) Upward forces and deflesctions are positive,
and hence in agreement with the corresponding convention inm
reference l.

3) Clockwise rotations of the straight line ;oin—
ing tho ends of a member ars positive, the reverse of the
conventlon uwused in reference 1 for slopo.

APPENDIX IT

> -
*

MoﬁéﬁﬂeArea Probf“df'cérnyHQef'ﬁé&tor Fogﬁgi;”

The principle of moment areas states that the deflec~-
tion of any point "a" on a beam from the tangent at any
other point "»" ig equal to the moment about "a' of the
area under the M/BI diagram between "a'" and "bt. In
figure 1 the tangent at 3B 1z horlzontal; so the deflec~
tlon of A with respect to this tangent is gero. Hence
the moment about A of the area under the M/EI diamgram
of the boam is mero. The expression for moment, wusing
the moment-distribution convention of signs, is:

_ -Ug - -EA. cos & x z
M= I 4 ogin T + My cos 3
) sin 3 9 :

where x is the distance from A. The moment of the area
under the M/BI curve is therefore

3 jL Mx & _ 0
8 = BT o x dx =

The value of ¥ 1ig substituted and the expression inte-
grated, making use of the formulas

-'éﬁf;; sin T d4x = 3% (sin ? - ? cog Jj

Y

Comi o e, e

S

“C_j'x'§o§ Z ax = 032 (cos ? + ? sin'5>_

t

i

i

T

|
te

Fuel
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The above integral reduces to

My 183
iy - T 3p

which 1g the same as that derived by the three~moment equa~
tion.

APPENDIX III

Yoment-Area Proof of Stiffness-Factor Formula

The rotation in radians of any point on a beam from
the tangent at any other point is equal to the arez under
the M/EI diagram between the two pointss, In figure 1
the tangent at B 1s horizontal; so the area undsr the
M/BI curve of the beam gives the absolute rotation of 4.
The expression for moment is:

~lp - My coe‘% = "
¥ o= . sin 3 + My cos 3

sin %
where x 4ig the distance from A., The srcea under the

¥/BI curve is:

T
6 = 37 6[ ¥ ax

Subatituting the value of ¥ and integrating, making use
of the formulas ) : .

¢ Jf sin dx = «0J cos

M

¢ J coe ¥ dx = +C3} sin

g )
cuiid

gives the expression:

LMy , o=
0 = zgr (B - 5)
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This may be writton:

i " 3EI6,
iy = —22L0
MEP-ap)

which iy the game value as was found by using the Newsll
formuila for slope.

APPENDIX IV
Check >f Stiffness~Facter Formula by Threo~Koment Equation

o - . R et . - LE - . g -

ﬂ I, ié. La %
1 o

A C

A eontinuous heam ABC has fixed ends at A and O,
A clockwiso moment M ig applied at . the center support
B, As the carry~over factor is known to be = gi, uging

tho threceemoment equatlion convention of signs, 1t is known
that iy = -(g—é-l—) M.p end Mg= - (Eg:—} Y., The three-
moment eguation for spans 1 and 2 is:

MA:E"_ Oy

VAT T R¥.g LB,y + 2Myp IyfBs + Mgola Oz _ o
I I I= Iz

Substituting the known values of My and My In ferms of
Ho.y and M.z anrnd reducing gives:

Ly (ﬁ ay® Lg (4522 - aaz)
M..B = - Ia 2 453 = Ia 352

e Eii Ly (4512 ~ a1a)
I, ( 3 4B, I 38,

i
' :‘\'%.i i

Qi
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showlng that in this special case the moment applied at 3B
1s distridbuted in proportion to the value of % ;Eggé—as
of each member. (See equation (3).)

APPENDIX V

Carry-0Over Factor for Axlal Tension

Assume tha%t the beam of figure 1 is sudbjected to ax-
ial tension., A is free to rotate, but restreined from
transverse motion. A4 given moment My is applied at 4
and it is desired %o find the magnitude of the resisting
moment at B, Mp. The three~moment egquation for this bean
ist

¥ L, oy L Bn  DoBn | Mgl

I, I, Iz Iz
Where M, = M¥p
¥; = Hg
Ils = 0
this gives
MaL Oy Lﬁh
I <Mz ( I °
whence
on
Hp = = —=—H
B zﬁh A

which is the same expression as that for compression ex-
cept that o and B have been changed to ap and fx,
respectively,

APPENDIX VI
Fixed-End loments when % = 0. (See reference 3, p. B85.)

¥ote: In the moments given in the following sketches the

convention of signs is the same as that used in the
three-moment equations by Niles and Newell, For the con-
vention used in moment disgtribufion, the sign of the mo-
ments glven at the right end must be changed,
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TABLE A
Physical Properties of Fuselage Truss Members

Carry—-|Stiff~ [Stiff-

Axial L over ness ness

Yember Size Length| load J factorifactor [fachtor

(a) coeffim

_ clent X.lob

i3, 5.7 Th 3

2U-4TU 1% X04035| 57,3 | 2815|3,59T | 0,310| 1.371 | 5.903

4U~BU |1 X ,085f 48,0 [~2830{4,11C| 3.2%7 « 240 « 8519

EU-68U |1 X ,035| 36,1 |~395013.,79C| 1.82%3 « 391 1.340

6U~%U 1% X +085] B0e0 [|=4070 |4.44C 23,740 «040 « 143

BL-~3L |1 X ,035| 39.3 {~211013,010C « 925 » 652 2.052

3L~4% l% X «035] 89,0 {-4325[/3,03¢C «938 « 4% 4.0938

41,~571, l% X ,038] 26,0 8723512.87T +3B7] 1e23B0 |1l.861

BImBL |1 X 035] 36.0 4355 3.97T «2BY! Ll.442 4,955

6L~-70 |1 X L0351 51,0 389515,32T «220] l«721 4,174

2U~3L |1 X 035 53.%7 |~=1870[{3,88C]| 2,50 « 352 «811

3L~4U 1% X 035 56,6 126512.807T «eB362] 1.239 3.901

4U~-4L 1% X o035] 58,3 47101 5.56T «208] 1,773 54419

4L~ 50 l% X 049 59,9 (-2865|3.,31C| 1.120 « D65 3.149

5U~5L 1% X .049! 54,0 429513, 607 « 300} L4375 8,502

BU~6L [ 1 X ,035]| 84,9 -84513,15C} 1.004 « 814 1.171

6U=6L | L& X ,085| 57,0 220(1.747 | .45 1,098 | 1.572

6U-7L % X 035 68,7 105({1.457 «453F 1,069 1270
(a)

Digmeter and thicknegs, inches.
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TABLE B
8tiff= Stiff- Column
Carry- ness ness distri-
L over factor factor bution
J factor coeffi~ coeffi~- coeffim
cient cient clent
(fixed) (pinned)
Axial compression
0] 0.50000 1.,00000 0.75000 1.0000
1,0 + B2640 « 26628 « 69852 1,0170
2.0 + 62628 «85804 «52210 1.073%7
2.5 « 73097 - 77193 « 35947 1l.,1226
3.0 «91893 « 65805 « 102086 1.1915
3.+5 131574 « 50201 -, 36705 1.2903
4,0 2456030 «29388 =1l.6294 le4364
4,5 - « 00479 - 1,6691
Axial tension
0 0 . 50000 1.0000 04,7500 1.0000
1.0 47825 10329 «7986 9837
2.0 « &17 37 1.,1268 +8305 « 2392
3.0 « 34768 1L.2703 1,116%7 . 8762
4.0 « 28419 1.4492 1.3321 » 8060
5.0 23308 1.6518 1.5622 7364
6.0. « 19405 1.8706 1,7999 « 6716
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TABLE C

Fixed-¥nd Moment Coefficlents

e it

Uniforn Concen-—
load Uniformly varying load trated
entire Ca Cg load
span midspan

Axial compression

PRI O
. e & ¢ » & e

Ao moOomoOoO

12,000 30,000 20.000 8,000
11.798 29,396 19.713 7.832
11,176 274655 18,755 7e322
10.690 26.291 18,015 6,930
10.071 24.6560 17.072 6e44l
9.301 22436 15.889 5.846
8.338 19.819 14,417 54137
7.180 16,766 12,588 4,301

Axial tension

OUeprOHO

COO000O0

12.000 20,000 20,000 8,000
12,198 304577 20.294 8,165
12,779 32.221 21,178 8,657
" 13.695 34,885 22 +541 9.448
14.888 38,370 24,329 10.504
164397 42,523 26,431 11,790
17.864 47,167 28.743 13.2656




TABLZ D

ZFixed-End Homent Coefficients
Concentrated Load at Any Point on the Span

Gl

| a

a a
S Oll i - 0.4 = 0-5 - 0.6 i = 0.7

i m
H]
e
fah
T
h
()

[}

(w4
o
Him
tip

1}

[an]

[ 3

o
e

i

o

*

w

=Pt O
OO LnOooO

Axial compression

1.0000 1,0000 1.0000 | 1.0000 1.0000 1.0000 1.000C 1.0000 1.0000
1.0086 1.0118 1.0160 | 11,0131 1.0218 1,0230 1.0227 1.2015 1.0172
1.0264 1.0451 1.0672 b 1.082¢ 1.0926 1..0983 1.0994 1.0961 1.0884
1.0431 1.0807 1,1122 1,1368 1.1544 1,1646 1.1670 1.1617 1.1487
1.0657 1.1242 1.1734 1,2135 1.2420 1.2590 1.2645 1,25657 1,2366
1.0964 1.184% 1,604 1.5226 1.3685 1.3965 1.4061, 1.3960 1.3669
1,142 1.2720 1.3888 1.4863 1.5604 1.6075 1.6255 1.6136 1,574
1.2018 1.3987 1.35805 1,7372 1.8600 1.9420 1,9780 1,9399 1.9082

N Axial tension . _
1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 12,0000 | 1.0000 | 1.0000 | 1.0000

. 9953 . 9885 .9839 L9812 .9798 L9775 .9805 .9825 .9654
L9767 .9579 .9429 L9316 L9241 . 9206 .9198 , 9231 . 9320
9514 .9127 ,8828 L8611 8467 .8399 .8400 .B469 .8812
.9206 .8595 L8140 7619 7516 7520 J7B37 .'7656 .78av
8870 8039 L7441 . 7033 6785 .6683 E71L7 6891 7214
.8530 7493 6778 6308 .6035 .5933 .5992 67219 .6627
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TABLE B

Fixed-End Yoment Coefficients
Uniformly Distributed Load Over Part of Span

——

Values of kj Values of Mp
L |a a a a a a a a a 1 a
7IT* 0.1 = 0.2 = 0.3 I = 0.4 I = 0,5 = 0.1 7= 0.2 T = 0.3 = 0.4 T = 0.5

Axial compression

e o w B e @
N OUro oo

BN pD-EO

1,0000 | 1.0000 { 1.0000 { 1.0000 { 1.0000 {1.0000 | 1.0000 | 1.0000 | 1.,0000 | 1.0000
1.0055 § 1.0095 | 1,0114 11,0133 | 1.,0148 |1.0123 |} 1.0085 | 1.0180 | 1.0215 | 1.0225
1,0174 | 1.0329 | 1.0453 | 1.0565 | 1.0370 |1.0681 | 1.,0922 | 1.0963 | 1.0976 | 1.0970
1.0282 | 1,0536 } 1.0746 |1.,0915 | 1,1044 |1,1500 }1.1554 | 1.1620 | 1.1643 | 1.1625
1.0438 | 1.0824 | 1.1152 | 1.1420 | 1.1626 |1.2254 | 1.244% | 1.2552 | 1.2585 | 1.2551
1.0637 | 1.,1210 { 1.1706 | 1.2117 | 1,2436 [1.3575 {1,3815 | 1.3961 ! 1,3994 | 1.3925
1.0935 { 1,1780 | 1.2526 | 1.31563 | 1,3648 |[1.5569 | 1,5939 | 1.6133 | 1.6161 | 1.6025
1.1320 | 1.2573 | 1.3708 | 1.4684 | 1,5470 |1.8860 | 1.9383 | 1.9646 | 1.9635 { 1.9376

Axial tengion

s 9 o » @
COOOO0OU

O RV O

1.0000 | 1,0000 { 1.0000 | 1.0000 { 1.0000 !1.0000 { 1.0000 | 1.0000 | 1.0000 | 1.0000
. 9939 .9921 .9895 . 9877 . 9864 . 9860 .9861 . 9793 9750 L9751
.9840 L9717 .9611 . 9528 . 9470 .9408 . 9267 . 9225 «9R1% L9217
.9678 . 9407 .9192 . 9033 .8915 . 86956 8539 .8470 .8427 .8428
<9461 . 9037 .8708 .8459 .8282 . 7931 SR . 7644 7579 . 7571
. 9234 .8641 .8204 .7867 . 7640 L7321 . 7049 6746 6772 .6752
.8993 . 8248 L7697 . 7304 7033 .6756 .6421 .6190 6060 .6023

%

$EQ °*ON ©30N T®OTUUOSE ‘V'0'YV'LK

9%



thraphs I,IX

1.A.0.4. Teolnioal Note Xo. B34

2. a0
/
1.8 1.8 ///
Tension, far end ﬁ.:ﬂ-v//
1.6L 1.6 7
/
[ ////
1. D 1.4 // 4
: // //
L / » / I/<!minn, far end ploned
af ] 0 T
T b~ 7/
[ _ il )
/ LY
.B Z -8 e \\
)4 ~ N
.8 = / 8 \\ A
] [ \(-Oo-p:mim, far end f£ixed
T . \ _
* | | reasm || gommmgeaion, L\
T~
.8 \\ .3 \\ \\
0 1 ] ] 4 -] [s] 1 ] 4 . 5 [

3
Graph.1.- Oaxry - over facter. ¢ -E%

i1y

Graph IT.- §tiffness Instor cosfficlemt. K = 0




Graphs III,IV

N.h.Quh. Tocimiocal Note Ho. B34

T 4
: .‘C;iﬁgo,,, | 7
. /
/
¥y = /
//
/|
“ A
4
13 ,/
0 11
13 //
T
1 \\
\ %___-Onnm.-nl:l.on
. .
\
, N
\
N
. \
| \

0

1 3 L?j 4 5
Oraph ITI.- Fipsd-sed moment gosffiolent. Uniform load.

&

[T T 1
w, b, [l
30 fey
\\\ H‘Mﬁ
- AN
AN
. R
[T
o
2 \

&8

13

n A

0 1 3 . 8 4 B
174 ]
Graph IV.- Fixed—-end motient coeffioiext. Uniformly warylng
load, Axisl oowpression.



Graphs V,V1
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